首页 > 芯片 > 半导体 > io口有多少种工作模式,怎样查看或设置GPIO口的工作模式

io口有多少种工作模式,怎样查看或设置GPIO口的工作模式

来源:整理 时间:2023-02-22 23:00:08 编辑:亚灵电子网 手机版

1,怎样查看或设置GPIO口的工作模式

有关推挽输出、开漏输出、复用开漏输出、复用推挽输出以及上拉输入、下拉输入、浮空输入、模拟输入的区别最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配

怎样查看或设置GPIO口的工作模式

2,stc15单片机并行p口工作模式有几种每种模式的特点

stc15系列单片机的io口有四种工作模式:准双向口模式(和普通51单片机一样)推挽输出模式高阻输入模式od模式(漏极开路模式,和普通51的p0口一样)

stc15单片机并行p口工作模式有几种每种模式的特点

3,iap15w4k58s4 单片机的所有 io 口均有 4 种工作模式分别是哪些

分别为:高阻、输入、输出和双向
你好!为什么不看器件手册?仅代表个人观点,不喜勿喷,谢谢。
为什么不看器件手册?

iap15w4k58s4 单片机的所有 io 口均有 4 种工作模式分别是哪些

4,Stm32之GPIO工作模式

GPIO初始化结构体的时候,必须要配置 合适的工作模式 ,这样才能使得IO口发挥应有的作用。工作模式大体上共分为输入输出两类,共8种,下面将介绍这8种工作模式。 如上输入模式共有4种,主要是读出IO口的相关数据,比如按钮外设就需要读出高低电平来判断它的按下与松开。它们的数据通过TTL施密特触发器将模拟信号转化为数字信号输入在数据寄存器中,或者是直接由模拟信号输入到片上外设。 值得注意的一点是当GPIO被设置为输入模式的时候,就不需要配置其输出速度了,当然 GPIO_Init() 也会自动的忽略这一点的。

5,stc15单片机并行p口工作模式有几张

stc15系列单片机的io口有四种工作模式:准双向口模式(和普通51单片机一样)推挽输出模式高阻输入模式od模式(漏极开路模式,和普通51的p0口一样)
你是问stc15单片机并行p口工作模式有几种吧?四种工作模式:1、弱上拉(准双向口)2、推挽输出(强上拉)3、高阻输入(无上下拉)4、开漏输出(内部上拉断开)

6,IO口模式

最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配置种类有8种之多: (1)GPIO_Mode_AIN 模拟输入 (2)GPIO_Mode_IN_FLOATING 浮空输入 (3)GPIO_Mode_IPD 下拉输入 (4)GPIO_Mode_IPU 上拉输入 (5)GPIO_Mode_Out_OD 开漏输出 (6)GPIO_Mode_Out_PP 推挽输出 (7)GPIO_Mode_AF_OD 复用开漏输出 (8)GPIO_Mode_AF_PP 复用推挽输出 对于刚入门的新手,我想这几个概念是必须得搞清楚的,平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但一直未曾对这些做过归纳。因此,在这里做一个总结: 推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。 详细理解: 如图所示,推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。 开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内). 开漏形式的电路有以下几个特点: 1.利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。 2.一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。) 3.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。 4.可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。补充:什么是“线与”?: 在一个结点(线)上,连接一个上拉电阻到电源VCC或VDD和n个NPN或NMOS晶体管的集电极C或漏极D,这些晶体管的发射极E或源极S都接到地线上,只要有一个晶体管饱和,这个结点(线)就被拉到地线电平上.因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会饱和,所以这些基极或栅极对这个结点(线)的关系是或非NOR逻辑.如果这个结点后面加一个反相器,就是或OR逻辑. 其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。 关于推挽输出和开漏输出,最后用一幅最简单的图形来概括: 该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。 浮空输入:对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了 由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。 上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。 复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用) 最后总结下使用情况: 在STM32中选用IO模式 (1) 浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1 (2)带上拉输入_IPU——IO内部上拉电阻输入 (3)带下拉输入_IPD—— IO内部下拉电阻输入 (4) 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电 (5)开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能 (6)推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的 (7)复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA) (8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS) STM32设置实例: (1)模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0); (2)如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD; 通常有5种方式使用某个引脚功能,它们的配置方式如下: 1)作为普通GPIO输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时不要使能该引脚对应的所有复用功能模块。 2)作为普通GPIO输出:根据需要配置该引脚为推挽输出或开漏输出,同时不要使能该引脚对应的所有复用功能模块。 3)作为普通模拟输入:配置该引脚为模拟输入模式,同时不要使能该引脚对应的所有复用功能模块。 4)作为内置外设的输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时使能该引脚对应的某个复用功能模块。 5)作为内置外设的输出:根据需要配置该引脚为复用推挽输出或复用开漏输出,同时使能该引脚对应的所有复用功能模块。 注意如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。 比如要使用 STM32F1 03VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。 如果要使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。 ======================================================================================= 一、GPIO模式配置 1、输入/输出模式(参考stm32手册) 2、GPIO输出模式下,几种速度的区别: (1). GPIO 引脚速度: GPIO_Speed_2MHz (10MHz, 50MHz) ; 又称输出驱动电路的响应速度:(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路,通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。) 可理解为: 输出驱动电路的带宽:即一个驱动电路可以不失真地通过信号的最大频率。 (如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。失真因素?) 如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。 关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。 带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声 比如:高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。关键是GPIO的引脚速度跟应用匹配(推荐10倍以上?)。 比如: ① USART串口,若最大波特率只需115.2k,那用2M的速度就够了,既省电也噪声小。 ② I2C接口,若使用400k波特率,若想把余量留大些,可以选用10M的GPIO引脚速度。 ③ SPI接口,若使用18M或9M波特率,需要选用50M的GPIO的引脚速度。 (2). GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度.手册上指出GPIO最大翻转速度可达18MHz。 @通过简单的程序测试,用示波器观察到的翻转时间: 是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。 如:有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。 (3).GPIO 输出速度:与程序有关,(程序中写的多久输出一个信号)。 2、GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。 3、在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。 4、所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。 5、GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。 一般应用: 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电。 浮空输入_IN_FLOATING ——可以做KEY识别,RX1 开漏输出_Out_OD——应用于I2C总线; (STM32开漏输出若外部不接上拉电阻只能输出0) 二. 管脚的复用功能 重映射 1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚) STM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。 2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功 能的引出脚位是可通过程序改变到其他的引脚上! 直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。 如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。 (参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值] 【注】 下述复用功能的引出脚具有重映射功能: 举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。 (1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。 (2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚. =================================================================================== 输入输出快速切换

7,stm32 io口各种模式下得电流是多少

看芯片手册。比如说STM32F030单IO口最大25mA全部IO扣加起来不能超过80mA
STM32的GPIO输入输出模式的配置种类有8种之多(输入和输入各4种):(1)GPIO_Mode_AIN模拟输入(2)GPIO_Mode_IN_FLOATING浮空输入(3)GPIO_Mode_IPD下拉输入(4)GPIO_Mode_IPU上拉输入(5)GPIO_Mode_Out_OD开漏输出(6)GPIO_Mode_Out_PP推挽输出(7)GPIO_Mode_AF_OD复用开漏输出(8)GPIO_Mode_AF_PP复用推挽输出一般电流20ma以内
推挽模式最高,但也不建议超过20mA否则会引起引脚发热烧毁
是 官电流还是输出电流。输出能力弱,建议加驱动模块。

8,STM32单片机IO口各种模式的特点

1 STM32的输入输出管脚有下面8种可能的配置:(4输入+2输出+2复用输出) ① 浮空输入_IN_FLOATING ② 带上拉输入_IPU ③ 带下拉输入_IPD ④ 模拟输入_AIN ⑤ 开漏输出_OUT_OD ⑥ 推挽输出_OUT_PP ⑦ 复用功能的推挽输出_AF_PP ⑧ 复用功能的开漏输出_AF_OD 1.1 I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口 的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声 控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

9,简述8155IO口PC口的工作方式

.可编程RAM/IO芯片81551.AD0~AD7;三态地址/数据线。是低8位地址与数据复用线。地址可以是8155片内RAM单元地址或I/O端口地址。AD0~AD7上的地址由ALE的下降沿素存到8155片内地址锁存器。也就是由AIE信号来区别AD0~AD7上出现的地址信息还是数据信息。2.ALE;地址锁存允许信号。在ALE信号的下降沿把ADO~AD7上的8位地址信息,CE片选信号及IO/M信号都锁存到8155内部存储器中。3.IO/M;I/O端口和RAM选择信号。当IO/M=1时,AD0~AD7的地址位8155I/O端口地址,选择I/O端口。当IO/M=0时,AD0~AD7的地址位8155片内RAM单元地址,选择RAM存储单元。4.CE;片选信号。低电平有效。由ALE信号的下降沿锁存到8155内部存储器。5.RD;读选通信号。低电平有效。当RD=0,CE=0时开启AD0~AD7的缓冲器,被选中的片内RAM单元或IO口的内容送到AD0~AD7`上。6.WR;写选通信号。低电平有效,当CE,WR都有效时,CPU输出到AD0~AD7上的信息想偶尔到8155片内PAM单元或I/O端口。7.PA0~PA7;A口的I/O线。8.PB0~PB7;B口的I/O线。9.PC0~PC5;C口的I/O线。10.TIN;定时器输入。11.TOUT;定时器输出。13.Vcc;+5V电源。14.Vss;接地。
你说呢...

10,STC系列单片机定义IO口的工作状态

当然可以啊,只要对应的位按照你的设置来写寄存器,那相应的端口就是你需要的状态了。
PnM0=0,PnM1=0是设为了 准双向口(即芯片内部有弱上拉电阻,即可作为读又可写出(也叫传统51模式))可以设置某一位的模式,例如:P3M1=10100000BP3M0=11 000000B既是设置 P3.7为开漏(11),P3.6为强推挽输出(01),P3.5为高阻输入(10),P3.4/P3.3/P3.2/P3.1/P3.0为准双向口/弱上拉(00)
可以的,比如P3.0定义为高阻,其余为标准P3M0=0x00;P3M1=0x01;
如果给P1M1赋值0X03,给P1M0赋值0X05,那么P1口各个引脚对应的模式就是:P1M1 P1M0 IO口模式0 0 P1.7准双向口0 0 P1.6准双向口0 0 P1.5准双向口0 0 P1.4准双向口0 0 P1.3准双向口0 1 P1.2推挽输出1 0 P1.1高阻1 1 P1.0开漏举个例子吧P1.0为推挽输出,P1.1输入,其余为准双向。则配置成:P1M1=0000 0010BP1M0=0000 0001B这样,P1M1.0=0,P1M0.0=1,推挽输出P1M1.1=1,P1M0.1=0,输入
与51单片机一样,只不过STC是国产的
文章TAG:io口有多少种工作模式多少工作工作模式

最近更新

  • 无线键盘接口电路,电脑键盘按键不行怎么办?无线键盘接口电路,电脑键盘按键不行怎么办?

    接口电路。检查键盘和电脑主机之间的连接接口,以确定接触是否良好,再次插拔连接键盘和电脑主机的USB电缆,键盘电路板是整个键盘的控制核心,位于键盘内部,主要作为按键扫描识别、编码和传输.....

    半导体 日期:2024-04-11

  • 大功率灯泡功率多少,一般家用电灯泡功率多大大功率灯泡功率多少,一般家用电灯泡功率多大

    本文目录一览1,一般家用电灯泡功率多大2,平时所说的大功率LED灯是多大功率3,灯泡电功率一般是多少4,一个普通白炽灯泡功率为多少啊5,400W250W70W150W60W的电灯的功率是多大6,灯泡的实际功率.....

    半导体 日期:2024-04-10

  • 1节1号标准干电池的内阻计算多少,1号电池的内阻是多少1节1号标准干电池的内阻计算多少,1号电池的内阻是多少

    1号电池的内阻是多少2,一节干电池的内阻是多少3,1号和5号干电池内阻各多大4,干电池的内阻一般为多大5,一节干电池的电流是多大6,15V1号干电池内阻一般是多少7,1号电池内阻大约为多少8,一号干.....

    半导体 日期:2024-04-10

  • 运放水位控制电路,水泵水位控制电路示意图运放水位控制电路,水泵水位控制电路示意图

    家用水泵的自动抽水控制电路如下图所示:当水位下降时,浮子开关的触点闭合,水泵工作。电子水位开关和控制器,适用于污水环境,当水位下降到B点以下时,由于脚②的低电位而设置,高输出电平释放继.....

    半导体 日期:2024-04-10

  • 30mw是多少w,喇叭功率30MW 是 什么意思30mw是多少w,喇叭功率30MW 是 什么意思

    喇叭功率30MW是什么意思mW是表示功率大小的一种单位,1KW=1000W,1W=1000mW。2,30mwcm2等于多少wm230/1000*10000=300没看懂什么意思?3,2030mw什么意思20-30兆瓦,1兆瓦=1000KW虽然我很聪明,但这.....

    半导体 日期:2024-04-10

  • 下雨传感器电路,用于感应雨水的传感器下雨传感器电路,用于感应雨水的传感器

    雨雪传感器,雨雪天主机自动停机。当刮水器杆设置在INT位置时,下雨时,雨量传感器将自动感应雨量以挂水,它装有雨水传感器,刮风下雨时会自动关窗,GloriasaltyRV有一个雨水传感器,此时在外面晾晒.....

    半导体 日期:2024-04-10

  • 反 型滤波电路,反向过滤方法反 型滤波电路,反向过滤方法

    如果我们想要获得更好的滤波效果,通常需要一个由电容和电感组成的滤波电路,例如“π滤波电路”。通常π型滤波电路由两个电容和一个电阻组成,滤波效果较好,因为滤波电路需要大容量的储能电.....

    半导体 日期:2024-04-10

  • 有源回馈整流电压提升,反馈整流器和有源整流器的区别有源回馈整流电压提升,反馈整流器和有源整流器的区别

    使用电流源作为共发射极放大器电路的有源负载可以通过电流源的大交流等效电阻提高输出电压增益。单相桥式整流电路、双绕组全波整流电路和半波整流电路,整流后的电压为空载时的交流电压.....

    半导体 日期:2024-04-10