首页 > 算法 > 神经网络 > pcfich里的cfi为多少比特,计算机的物理地址和IP地址长度各是多少比特如何表示这些地址 搜

pcfich里的cfi为多少比特,计算机的物理地址和IP地址长度各是多少比特如何表示这些地址 搜

来源:整理 时间:2023-08-11 14:49:04 编辑:亚灵电子网 手机版

本文目录一览

1,计算机的物理地址和IP地址长度各是多少比特如何表示这些地址 搜

物理地址48比特,ip32比特,物理地址用16进制表示,ip地址用10进制表示,另外还有ipv6。。。

计算机的物理地址和IP地址长度各是多少比特如何表示这些地址  搜

2,LTE峰值速率怎么计算

下面以一个简单的例子,介绍下LET-FDD下行峰值速率的计算。首先,大家知道LTE下行可以达到几百Mbps,但需要满足如信道带宽、循环前缀的类型、发射模式、PDCCH的配置等条件才能实现。一、下行峰值速率计算首先,以信道带宽10MHz、正常CP、发射模式为2*2 MIMO、PDCCH配置3个符号、调制方式为64QAM、编码速率为1为前提,估算结果如下: 10MHz带宽可获得的RE数为:12子载波(1个PRB)*7个符号(0.5ms)*50个资源块*2*10(帧长)=84000个,而每个RE可承载一个调制符号,那么采用64QAM调制方式,一帧中总共有:84000*6bits/每个调制符号=504000bits,在编码速率为1的情况下,速率为504000/10ms=50.4Mbps,又由于采用2*2 MIMO(双发双收模式)会使速率翻倍,因此在以上条件下可计算到的最大速率为100.8Mbps,但这是没有考虑控制信道的开销的,即所有的无线资源均用于承载数据,而实际上配置PDCCH为3个符号,加之PSS\SSS\PBCH\RS等开销,大约占29%左右,那么最终速率为100.8Mbps*29%=71.56Mbps. 从整个估算过程来看,计算下行峰值速率的思路就是计算当前条件下能提供的最大无线资源能力,然后扣除控制信道开销,即获得实际传输数据能力。可以写一个简单公式: 下行峰值速率=(RB数(不同带宽的能力)*12*14*(1-控制信道开销(%))*调制符号效率*发射模式能力*编码数率)/1ms,由公式可见,需要计算的只有控制信道开销(%),若对LTE的资源分配有一定了解不难计算。因为几个符号的开销是固定的。如PSS/SSS都占124个RE,PBCH占用240个RE(单发),当CFI选定一个值时,PDCCH/PHICH/PCFICH的开销也为定值,如CFI=3时(PDCCH为3个符号),其PDCCH/PHICH/PCFICH开销为19.05%,CFI=1时,PDCCH/PHICH/PCFICH开销为4.76%。 以上的峰值速率均是依靠配置数据从理论的角度计算得到的,而精确的速率可依靠无线环境质量,选择的编码调制方式对应的传输块大小计算。

LTE峰值速率怎么计算

3,每个IP地址长是多少位比特

分协议ipv4 4byte 32bit ipv6 16byte 128bit当前使用的多为前者,趋势是后者,如果用到后者那么世界上每一粒沙子都会分配到一个ip的!
ipV4:每个IP地址长度为32位(bit),分成4段。IPV6:每个IP地址长度为128位(bit),分成8段。

每个IP地址长是多少位比特

4,pcfich里的cfi为多少比特

PDCCH中承载的是DCI(Downlink Control Information),包含一个或多个UE上的资源分配和其他的控制信息。在LTE中上下行的资源调度信息(MCS, Resource allocation等等的信息)都是由PDCCH来承载的。一般来说,在一个子帧内,可以有多个PDCCH。UE需要首先解调PDCCH中的DCI,然后才能够在相应的资源位置上解调属于UE自己的PDSCH(包括广播消息,寻呼,UE的数据等)搜索前面提到过,LTE中PDCCH在一个子帧内(注意,不是时系)占用的符号个数,是由PCFICH中定义的CFI所确定的。UE通过主,辅同步信道,确定了小区的物理ID PCI,通过读取PBCH,确定了PHICH占用的资源分布,系统的天线端口等内容。UE就可以进一步读取PCFICH,了解PDCCH等控制信道所占用的符号数目。在PDCCH所占用的符号中,除了PDCCH,还包含有PCFICH,PHICH,RS等内容。其中PCFICH的内容已经解调,PHICH的分布由PBCH确定,RS的分布取决于PBCH中广播的天线端口数目。至此,(全部的)PDCCH在一个子帧内所能够占用的RE就得以确定了。由于PDCCH的传输带宽内可以同时包含多个PDCCH,为了更有效地配置 PDCCH和其他下行控制信道的时频资源,LTE定义了两个专用的控制信道资源单位:RE组(RE Group,REG)和控制信道单元(Control Channel Element,CCE)。1个REG由位于同一OFDM符号上的4个或6个相邻的RE组成,但其中可用的RE数目只有4个,6个RE组成的REG中包含了两个参考信号,而参考信号RS所占用的RE是不能被控制信道的REG使用的。协议中(36.211)还特别规定,对于只有一个小区专用参考信号的情况,从REG中RE映射的角度,要假定存在两个天线端口,所以存在一个REG中包含4个或6个RE两种情况。一个CCE由9个REG构成。定义REG这样的资源单位,主要是为了有效地支持 PCFICH、PHICH等数据率很小的控制信道的资源分配,也就是说,PCFICH,PHICH的资源分配是以REG为单位的;而定义相对较大的CCE,是为了用于数据量相对较大的PDCCH的资源分配。PDCCH在一个或多个连续的CCE上传输, LTE中支持4中不同类型的PDCCH,如下图所示:PDCCH format Number of CCEs Number of resource-element groups Number of PDCCH bits 0 1 9 72 1 2 18 144 2 4 36 288 3 8 72 576LTE中,CCE的编号和分配是连续的。如果系统分配了PCFICH和PHICH后剩余REG的数量为NREG,那么PDCCH可用的CCE的数目为NCCE=NREG/9向下取整。CCE的编号为从0开始到NCCE-1。PDCCH所占用的CCE数目取决于UE所处的下行信道环境,对于下行信道环境好的UE,eNodeB可能只需分配一个CCE,对于下行信道环境较差的UE,eNodeB可能需要为之分配多达8个的CCE。为了简化UE在解码PDCCH时的复杂度,LTE中还规定CCE数目为N的PDCCH,其起始位置的CCE号,必须是N的整数倍。每个PDCCH中,包含16bit的CRC校验,UE用来验证接收到的PDCCH是否正确,并且CRC使用和UE相关的Identity进行扰码,使得UE能够确定哪些PDCCH是自己需要接收的,哪些是发送给其他UE的。可以同来进行扰码的UE Identity包括有:C-RNTI, SPS-RNTI,以及公用的SI-RNTI, P-RNTI和RA-RNTI等。每个PDCCH,经过CRC校验后,进行TBCC信道编码和速率匹配。eNodeB可以根据UE上报上来的CQI(Channel Quality Indicator)进行速率匹配。此时,对于每个PDCCH,就可以确定其占用的CCE数目的大小。前面已经提到过,可用的CCE的编号是从0到NCCE-1。可以将CCE看作是逻辑的资源,顺序排列,为所有的PDCCH所共享。eNodeB 根据每个PDCCH上CCE起始位置的限制,将每个PDCCH放置在合适的位置。这时可能出现有的CCE没有被占用的情况,标准中规定需要插入NIL,NIL对应的RE上面的发送功率为-Inf,也就是0。此后,CCE上的数据比特经过于小区物理ID相关的扰码,QPSK调制,层映射和预编码,所得到的符号按照四元组为单位(Symbol Quadruplet,每个四元组映射到一个REG上)进行交织和循环移位,最后映射到相应的物理资源REG上去。物理资源REG首先分配给PCFICH和PHICH,剩余的分配给PDCCH,按照先时域后频域的原则进行REG的映射。这样做的目的是为了避免PDCCH符号之间的不均衡。1、一个子帧中可以传好几个PDCCH。这里的所谓的一个PDCCH指的是一个DCI,它有相应的format,加了16bit的CRC,然后用记加扰X-RNTI,然后tail biting,rate match出来一个比特序列。一个PDCCH按长度来分有4中format,分别对应1、2、4、8个CCE。一个DCI信息占用多少个CCE是eNB端根据UE的下行信道质量决定的,信道条件好就传较短的PDCCH,差就传长的。 2、好几个PDCCh复用,就是把上述的bit连起来。b1(0),b1(1),...,b1(M1),b2(0),b2(1).....如此下去参见下图: 4bbcda6d494c2781a0a5a.jpg (32.02 KB)2011-12-27 13:15上述的复用,其实是各个PDCCH到reg number这个虚拟资源的映射,中间可能会有inf(零)。 1、PDCCH的整个流程简述,其实前面已经写过,只是现在觉得不透彻。 各路DCI的CRC Attachment(通常也有人管一个DCI叫做一个PDCCH) ----》 RNTI加扰(神马类型的RNTI取决于UE现在想干什么,需要什么,或者说取决于DCI传的是什么) ----》 TailBiting Convolutional Encoder ----》RateMach ----》PDCCH复用 (之后插入NIL)----》比特加扰 ---》 QPSK调制 ---》 LayerMapping & Precoding ----》 交织 ---》小区间相关加扰(就一个循环移位) ---》 资源映射。2、关于NIL的插入。由于PDCCH占用的是除了CRS,PCFICH,PHICH之外的REG,其数目可以记为Nreg,但是PDCCH资源分配的单位是CCE,是9个REG。所以 Ncce = floor(Nreg/9),那这些个不能被整除的REG就要用NIL来填充,其实就是-Inf,也就是0。在PDCCH复用的时候在尾部插入。还有就是为了满足PDCCH的聚合等级对齐,也要插入NIL,这些个东西都是复用模块该搞定的问题。一般的DCI都30来个bit,可是一个CCE可以传72bit,而一个PDCCH占几个CCE是MAC告诉PHY的,也就是说这个问题是通过RateMatch来解决的。 总之,PDCCH是把除了除了CRS,PCFICH,PHICH之外的资源占光的,这个很合理,留了也没用。3、关于PDCCH盲检测的搜索空间,公共的不用说,UE Specify的搜索空间36.213里面有详细的讨论,它的M(L)个candidates对应m从0到M(L)-1.期间Yk对一个子帧的PDCCH来说是个定值。4、从交织器读出来的调制symbol数目占光所有的RE,复用其实已经相当于把DCI和逻辑的CCE number对应上了,后面资源映射,先时域后频域。

5,ip地址有几位比特

32位 分为网络号,子网号和主机号
IP地址由 32位二进制代码组成.其中每8位为一组.我们平时看到的IP地址是以十进制表示的.
32位的二进制码组成我们常看到的是十进制的例如192.168.1.1
没有比特位 有主机位 网络位ip 192.168.0.1 像1用2禁制表示 00000001 其中1位就是1bit 8bit=1byte 字节

6,tdlte系统组网为什么必须采用8天线规模建网

摘要 快速发展的数据业务对于无线网络的数据传输能力要求越来越高,LTE技术在这种需求下应运而生。反映数据下载能力的下行流量是衡量LTE系统性能的一个极其重要的指标。本文分析了TD-LTE系统中影响单用户下行流量的各种因素,并针对运营商的组网测试,对众多测试案例进行筛选,提出了一套测试下行流量的核心案例,并且介绍了这些案例的测试方法。这些测试案例也可以作为实验室测试下行流量功能的案例。 随着通信技术的蓬勃发展,3GPP开展UTRA长期演进技术的研究,即LTE技术,以实现3G技术向B3G和4G的平滑过渡。LTE的改进目标是实现更快的数据速率、更短的时延、更低的成本、更高的系统容量以及改进的覆盖范围。在3GPP LTE规范中,明显增加了峰值数据速率,要求在20MHz带宽上达到100Mbit/s的下行传输速率和50Mbit/s的上行传输速率。目前随着TD-SCDMA的广泛应用,由TD-SCDMA平滑演进到TD-LTE已经成为一种发展趋势。本篇文章着重阐述了在TD-LTE系统中如何优化单用户的下行流量测试。 无线网络侧用户数据处理的流程 图1-1 3GPP LTE网络的用户面协议栈 图1-1是3GPP LTE网络的用户面协议栈 [1]。左边蓝色框内是无线网络侧的用户面协议栈。下行数据从核心网传输到基站侧后,经过PDCP层、RLC层和MAC层的封装映射到物理层上,再通过空口传输到UE侧。UE侧经过相应层的解封装后,得到下行的数据包。 PDCP层从上层接收数据,对数据进行压缩和加密,然后再转发到RLC层。RLC层根据底层传输块大小对上层PDU进行分段,然后通过确认模式、非确认模式或者透明模式传输到MAC层,并通过ARQ机制进行错误修正。MAC层实现了UE间的动态调度,能通过HARQ进行错误纠正以及实现传输块格式的选择等功能。物理层为MAC层和高层提供信息传输的服务。在TD-LTE系统中,MAC层和物理层的配置和功能直接影响了用户的下行流量。 下行用户数据在MAC层是承载在传输信道DL-SCH上的。当基站发射数据的天线多于一根时,MAC层会将接收到的上层数据分成两个比特流。图1-2是传输信道DL-SCH在MAC层的一个比特流的处理流程 [2]。每一个比特流需要被附加24比特的CRC校验位,然后再进行比特加扰。如果比特流的大小大于传输信道的最大长度,比特流就会被分割成多个码块,每一码块都要加24比特的CRC校验位。经过码块分割后,每一个码块都要进行信道编码。DL-SCH传输信道使用的是Turbo 1/3 编码方式。编码后的数据进入HARQ软比特缓冲器后,进行HARQ的功能处理。从HARQ软比特缓冲器输出的比特流进行二次交织后,与控制信息复用,然后再映射到物理信道上。 图1-2传输信道DL-SCH在MAC层的处理流程 图1-3是物理信道PDSCH上两个码字的处理流程 [3]。首先,将传输信道DL-SCH上的码字进行加扰,然后再进行调制。PDSCH的调制方式可以是QPSK、16QAM或64QAM。经过调制后的码字是复值的调制符号,这些符号又会映射在一个或者多个的空间层上。在LTE系统中,空间复用可以有1、2、3或4层。每一层的复值信号经过预编码后映射在为这个PDSCH分配的资源单元上,然后再经过OFDM调制,被发送到天线端口上。 图1-3 PDSCH物理层处理流程 下行流量的潜在影响因素 用户面数据的处理流程描述了物理层和MAC层对用户数据的处理过程。物理层的配置决定了系统最终能够为用户提供的物理承载能力,而这些物理承载中映射的用户信息比特数是由MAC层所采用的编码率、调制方式以及是否有数据重传等因素决定的。所以,下面分别从物理层和MAC层分析影响下行流量的因素。 TD-LTE系统物理层的用户传输能力 图2-1是TD-LTE的帧结构 [3]。一个无线帧的长度是10ms,由两个结构一样的半帧组成,每个半帧中有五个子帧。子帧1是特殊时隙,用来传输DwPTS、GP和UpPTS。子帧0和子帧 2分别固定用作下行和上行。子帧 3和子帧4可以用作上行或者下行。 图2-1 TD-LTE帧结构 下行物理信道有物理下行共享信道(PDSCH),物理广播信道(PBCH),物理控制格式指示信道(PCFICH),物理下行控制信道(PDCCH),物理HARQ指示信道(PHICH)。每一个下行物理信道都是一系列的资源粒子RE的集合。除此之外,物理层上还有一些资源单元不对应物理信道,只是传输下行物理信号,其中包括参考信号和同步信号。在这些所有的物理资源上,只有PDSCH是用来传输用户数据的。表2-1举例说明了物理信道PDSCH在特定系统配置下能够提供的最大资源单元 (RE)。 表2-1 物理信道PDSCH基于特定系统配置下可用的资源单元 物理信道PDSCH可用的资源单元的数量直接影响了用户的下行流量。所以,物理层对下行流量的影响是在于不同的系统配置。这些配置因素包括带宽、多天线技术、上下行时隙比、下行控制信道的OFDM符号数(CFI)和特殊时隙的配置。表2-2是这些影响因素的常用配置。 表2-2 物理层对下行流量的影响因素及常用配置 MAC层影响下行流量的因素分析 MAC层的数据传输是通过HARQ的多个进程来实现。每个HARQ进程就是一个输入数据比特的缓冲器。输入的数据流经过速率匹配后,与PDSCH上能够传输的比特数匹配。系统会根据UE反馈的ACK/NACK后,决定发送新的数据还是重传旧的数据。对于每次重传,使用不同的信道冗余版本,这些冗余版本是预先定义好的。所以,HARQ进程数,最大重传次数和冗余版本的设置直接影响了下行数据的传输速率。 MAC层还有对用户面数据处理的控制功能,即链路自适应功能。MAC层根据UE反馈的信道质量指示,RI的指示和ACK/NACK的上报,决定为该用户分配的传输块大小、编码率和调制方式。信道编码率是下行信息比特数与PDSCH物理信道比特数的比值 [4]。 Coderate = Nsys / NRM Coderate是信道编码率。Nsys 是在一个TTI内用户信息的比特数。NRM是经过速率匹配后映射到物理信道PDSCH上的比特数。NRM 用 RM (Nphy) 表示。Nphy 是物理信道PDSCH能够传输的比特数。 Nphy = NRE * RI * Nmod NRE是物理信道PDSCH所占的资源单元数。RI是数据传输在空间的级数,可以取1或者2。当天线采用发射分集的方式时,RI等于1。当天线采用空分复用的方式时,RI等于2。Nmod是一个调制符号所代表的比特数。Nmod可以取2,4或者6,分别对应的是QPSK,16QAM或者是64QAM的调制方式。 所以,Nsys = coderate * RM (NRE * RI * Nmod)。其中NRE与系统的基本配置相关。RI、Nmod和coderate的取值和链路自适应的功能相关。 基于以上分析,MAC层对单用户下行流量的影响体现在特定系统配置和不同的信道环境下,链路自适应功能和HARQ功能的实现,如图2-2所示。 图2-2 MAC层对下行流量的影响因素和常用配置 下行流量在组网测试中的测试案例选择 在测试学的理论中,覆盖测试常用的测试模型有:block coverage、branch coverage、C-use coverage、P-use coverage、DUD-chains和DU-pairs。图3-1表示的是不同的覆盖测试模型下 [5],覆盖率和检测出的缺陷数之间的关系。从图中可以看出,即便是在效率最高的blocks coverage模型下,覆盖率在达到85%左右后,检测出的缺陷数基本保持不变。所以,测试不是追求100%覆盖,而是要在一定的时间和成本下,寻找到一套有效的测试方法来保证产品的质量。这种测试理论同样适用于运营商的组网测试。 图3-1 覆盖率和检测出错误数的关系 组网测试主要是针对TD-LTE系统在实际应用的网络中最常规和最大量应用的场景进行测试。理想信道下的测试衡量的是系统最大的传输能力。非理想信道下的测试反映了近似于真实环境下的系统传输能力。下面分别在这两种测试环境下,结合上述对下行流量影响因素的分析,选择了一组核心的测试案例,如表3-1和表3-2所示。其中包括测试目的、系统配置、测试方法以及预期的测试结果。这些测试案例中选取的系统配置可以根据实际网络的需求情况,作出相应的调整,以便测试能够更好地为组网应用提供保障。 表3-1下行流量在理想信道环境下的核心测试案例 表3-2下行流量在非理想信道环境下的核心测试案例 总结 从测试理论来看,测试不是追求100%覆盖,而是要根据特定的测试目的,寻找到一套有效的测试方法来保证产品的质量。TD-LTE系统组网测试应该主要是针对实际应用的网络中最常规和最大量应用的场景进行测试。本文从理论上分析了物理层和MAC层对下行流量的主要影响因素和常用配置,提出了运营商组网测试中理想信道环境下和非理想信道环境下针对下行流量的核心测试案例,其中的系统配置可以根据运营商具体的网络应用需求作出调整。这些测试案例可以作为运营商TD-LTE网络入网测试时针对下行流量测试的主要测试案例。

7,1Geopbyte等于多少比特

1 Geopbyte = 2^10 Brontobytes = 2^20 Yottabytes = 2^30 Zettabytes = 2^40 Exabytes = 2^50 Petabytes = 2^60 Terabytes = 2^70 Gigabytes = 2^80 Megabytes = 2^90 Kilobytes = 2^100 bytes = 2^103 Bits,也就是说2的103次方Bits
虽然我很聪明,但这么说真的难到我了

8,古戈尔等于多少个亿

中文是每八比特读成“亿”,每四比特读成“万”,所以1 googol 应该读做“一万亿亿亿亿亿亿亿亿亿亿亿亿”。因为“大数”是代表1072,而“穰”则表示1028,所以使用中文大数法来表示则是“一穰大数”。当然现在创造了这个词,就可以写作并读作1古戈尔了。古戈尔(英语:googol),又译估勾儿、古高尔,指自然数10100,用电子计算器显示是1e100,即数字1后挂100个0。这个单词是在1938年美国数学家爱德华·卡斯纳(Edward Kasner)九岁的侄子米尔顿·西罗蒂(Milton Sirotta)所创造出来的。卡斯纳在他的《数学与想象》(Mathematics and the Imagination)一书中写下了这一概念。古戈尔是个很大的自然数,它是一个有200个质因子的合数,这些质因子分别是100个2和100个5,它的数量级和70的阶乘(70!)相同。1 googol 应该读做“一万亿亿亿亿亿亿亿亿亿亿亿亿”。古戈尔对数学没有什么特别的意义或是有什么特别的应用。卡斯纳创造这个词是为了勾画出一个不可想象的大数和无穷大之间的区别,它唯一的用途是有时被用于数学教学上。googol是一个比已知宇宙里所有原子总和还大的数,宇宙粒子大约估计有1072到1087个。因为googolplex是googol的指数,所以写下或存储一个googolplex的十进制数是不可能的,甚至是已知宇宙里的所有材料都加工成纸和墨或是磁盘也不行。
文章TAG:多少pcfich里的cfi为多少比特计算机的物理地址和IP地址长度各是多少比特如何表示这些地址

最近更新

  • PFC电路IC芯片,pfc芯片电源电路PFC电路IC芯片,pfc芯片电源电路

    你可以通过电源散热孔看到产品使用的是哪种PFC电路:无源PFC通常是一个大电感,由几片硅钢片缠绕铜线而成;有源PFC由电感线圈和IC控制芯片组成。有源PFC电路中常采用集成度较高的IC,采用有.....

    神经网络 日期:2024-04-11

  • 470d多少pin电源线,蓝宝石470d要用多大的电源470d多少pin电源线,蓝宝石470d要用多大的电源

    蓝宝石470d要用多大的电源满载达到208w电源必需额定450W2,rx480用的是多少pin的电源接口Rx480是单6pin供电单6pin电源接口啊,上面有些啊,看显卡接口旁边也可以看到的。3,买了块470d显卡发.....

    神经网络 日期:2024-04-11

  • 5532 前置电路图,ne5532预调谐电路图5532 前置电路图,ne5532预调谐电路图

    使用功率放大器电路的前一级,时基电路可以用作振荡器或延迟电路,但不能用作放大器电路。音色和音调电路可以从无线电杂志中的演示电路中选择,它们可以由正负电源供电-或者所有电路都可以.....

    神经网络 日期:2024-04-10

  • 电平变换电路,2/4电平转换电平变换电路,2/4电平转换

    连接:CMOS电路和TTL电路可以通过电平转换来匹配它们的电平域值。电平转换,完整的MOS晶体管双向电平转换电路如下图所示,在I中经常使用,输出高压低于电源电压,本电路适用于UART/USART串行端.....

    神经网络 日期:2024-04-10

  • 相机电路知识,摄像机电路相机电路知识,摄像机电路

    否则,可能会导致摄像头电路短路。根据驱动电路的相数,驱动电路可分为单相、两相和三相,数码相机镜头保养知识镜头是数码相机的重要组成部分,电路通电后,超声波电机目前将采用两相输入,当被触.....

    神经网络 日期:2024-04-10

  • 电网电压波动导致跳闸,电压波动导致跳闸电网电压波动导致跳闸,电压波动导致跳闸

    过电压:电路中的过电压可能导致跳闸保护,这可能是由电网电压波动或雷电引起的。在此期间,用电量较小时电网电压会升高,不良线路或电器的回波电压会升高并泄漏,微动开关启动器插在电源上不.....

    神经网络 日期:2024-04-09

  • 电动转向电路图,单相电机正反转电路图电动转向电路图,单相电机正反转电路图

    电动机根据不同的电源分为DC电动机和交流电动机,电力系统中的大多数电动机是交流电动机。参考电路图(如图所示,电机在规定时间范围内连续可逆正反转运行的自动控制电路,能让马达反转,电机正.....

    神经网络 日期:2024-04-09

  • 贴片电阻0603多少瓦,贴片电阻0603在生产中可以替代0805吗一个是18W一个是110贴片电阻0603多少瓦,贴片电阻0603在生产中可以替代0805吗一个是18W一个是110

    贴片电阻0603在生产中可以替代0805吗一个是18W一个是110应该是可以的,工程那边能通过就没什么大问题2,0603封装的贴片电阻功率是多大0603封装的贴片电阻功率是0.1W这个很便宜,一厘多钱一.....

    神经网络 日期:2024-04-09