首页 > 电路 > 电路分析 > 4560除以27多少,初一数学度分秒 计算

4560除以27多少,初一数学度分秒 计算

来源:整理 时间:2023-02-24 09:34:33 编辑:亚灵电子网 手机版

1,初一数学度分秒 计算

根据1°=60′ 1′=60〃 65°53′26〃+37°14′44〃=102°67′70〃=103°8′10〃 90°-47°26′15〃=89°59′60〃-47°26′15〃=42°33′45〃 21°32′20〃×4=84°128′80〃=86°9′20〃 100°12′15〃÷5=20°2.4′3〃 ∵2.4′=(2+0.4)′=2′+0.4×60〃=2′+24〃 ∴100°12′15〃÷5=20°2′27〃

初一数学度分秒 计算

2,六年级数学题

有些对,有些可能不对吧 1、0.6= =18÷(30 )=(6 ):10=(60 )% 2、一个比例里,两个外项积是1,其中一个内项是2.5,另一个内项是(2/5 )。 3、白兔有25只,灰兔有30只。灰兔的只数是白兔的( 120%),白兔的只数比灰兔少( 16.7%) ,灰兔的只数比白兔多( 20)%。 4、再过几天,苏通大桥就要全面通车啦。在一幅比例尺是1:1000000的地图上,量得苏通大桥的主桥长是1.4厘米,苏通大桥主桥的实际长度是(14 )千米。 5、从12的约数中,选出4个数,组成一个比例式是(2:4=6:12 )。 6、一个圆柱底面半径为1厘米,侧面展开后正好是一个正方形,圆柱的体积是(9.8596 )立方厘米。 7、28人参加乒乓球比赛,采用淘汰制,要决出冠军,共要比赛( 27)场。 8、甲数的 等于乙数的 ,甲乙两数的最简整数比是( ),如果甲数是30,那么乙数是( )。 9、17、13、15、15、14、15、16、15这组数的众数是( 15),平均数是(15 )。 106、99、104、120、107、112、33、102、97、100这组数据的中位数是( 109.5)。 10、如果3a=4b,那么a : b = (4 ):( 3),a和b成(正 )比例。 12、一个三角形,三个角度数的比是1 : 1:2,这个三角形三个角分别是( 45)度、( 45)度和( 90)度,这个三角形是( 直角)三角形或(等腰直角 )三角形。 13、一个底为3厘米,高为2厘米的直角三角形,以高为轴旋转一周,将会得到一个底面直径是( 6)厘米,高为( 2)厘米的( 圆锥)体,它的体积是( 56.52)立方厘米。

六年级数学题

3,小学四年级奥数题4道要算式要解析

下面算的是纯算术方法,没有方程1.根据题意有 现在姐妹的年龄示意图 __________‖___‖(姐姐) __________(妹妹) (‖___‖表示姐姐大妹妹的岁数)______‖___‖(某一年姐姐) ______‖(某一年妹妹)根据示意图知姐姐大妹妹的年龄是妹妹现在年龄的一半根据姐妹两人今年的年龄和为60岁有算式妹妹今年 60÷(1+1·5)=24岁姐姐24+24÷2=36岁2.根据题意有祖岁=12×孙岁(祖父过的年数正好等于孙子过的月数)儿岁=7×孙岁(儿子过的星期数正好等于孙子的天数)再根据祖+儿+孙=120有12×孙岁+7×孙岁+孙岁=120孙子有120÷(12+7+1)=6岁儿子=6×7=42岁祖父=12×6=72岁3.根据题意___1___1___1___1___1___+_________+(表示现在的父亲的年龄)___+_________+(表示儿子现在的年龄)(___1___1___1___1___1___+表示父亲十年前是儿子___+年龄的7倍,两+号间表示十年)___1___1___1___1___1___+_________+___________(十五年后父亲的年龄)___+_________+___________(十五年后儿子的年龄)根据图示有7× 十年前儿子的年龄+10+15 = 2×(十年前儿子的年龄+10+15)(即十年前儿子的年龄+25+ 十年前儿子的年龄+25) 可算得十年前儿子的年龄=5岁 所以十年前父亲年龄=5×7=35岁所以现在儿子5+10=15岁 现在父亲35+10=45岁4.正好分完的话应该梨2,苹果6,苹果少给1个,余下11个,则共给了11组,所以梨:2×11=22,苹果3×22=66
1.设妹妹当年x岁。60-2x=2x+x60=5xx=1212*2+12=36姐姐今年36岁2.设孙子x岁。x+7x+12x=120x+19x=12020x=120x=66*7=426*12=72祖父72岁、儿子42岁、孙子6岁3、因为15年后父亲的年龄是他儿子年龄的2倍,所以父子当时的年龄差为儿子当时的年龄,即10+15+儿子10年前的年龄. 因为10年前父亲的年龄是儿子年龄的7倍,父子的年龄差为儿子当时年龄的6倍, 由于年龄差不变,25+儿子10年前年龄=儿子10年前年龄的6倍. 所以25相当于儿子10年前年龄的5倍,可求出儿子10年前的年龄,使问题得解. 7-1-1=5 10+15=25(岁) 25÷5=5(岁) 5+10=15(岁) 5×7=35(岁) 35+10=45(岁) 答:儿子今年15岁,父亲今年45岁.4、正好分完的话应该梨2,苹果6,苹果少给1个,余下11个,则共给了11组,所以梨:2*11=22,苹果3*22=66 敬老院共有11个老人.
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米? 19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人? 20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个? 小学数学应用题综合训练(03) 21. 圈金属线长30米,截取长度为a的金属线3根,长度为b的金属线5根,剩下的金属线如果再截取2根长度为b的金属线还差0.4米,如果再截取2根长度为a的金属线则还差2米,长度为a的等于几米? 22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次? 23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米? 24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成? 25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵? 26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米? 27. 有高度相等的a,b两个圆柱形容器,内口半径分别为6厘米和8厘米.容器a中装满水,容器b是空的,把容器a中的水全部倒入容器b中,测得容器b中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米? 28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成. 29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件? 30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米? 小学数学应用题综合训练(04) 31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电? 32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个? 33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱? 34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元? 35. 小明和小燕的画册都不足20本,如果小明给小燕a本,则小明的画册就是小燕的2倍;如果小燕给小明a本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册? 36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
3、因为15年后父亲的年龄是他儿子年龄的2倍,所以父子当时的年龄差为儿子当时的年龄,即10+15+儿子10年前的年龄. 因为10年前父亲的年龄是儿子年龄的7倍,父子的年龄差为儿子当时年龄的6倍, 由于年龄差不变,25+儿子10年前年龄=儿子10年前年龄的6倍. 所以25相当于儿子10年前年龄的5倍,可求出儿子10年前的年龄,使问题得解. 7-1-1=5 10+15=25(岁) 25÷5=5(岁) 5+10=15(岁) 5×7=35(岁) 35+10=45(岁) 答:儿子今年15岁,父亲今年45岁.4、正好分完的话应该梨2,苹果6,苹果少给1个,余下11个,则共给了11组,所以梨:2*11=22,苹果3*22=66

小学四年级奥数题4道要算式要解析

4,类似小学的数学题

一、数字推理 下面的每一道试题都是按某种规律排列的数列, 但其中缺少一项,请你仔细的观察数列的排列规律, 然后从四个答案中选出正确的一个答案。 ⑴ 56 66 78 92 (A) A、108 B、100 C、96 D、102 解:题目中的这几个数后一个与前一个的差分别为66-56=10,78-66=12,92-78=14; 10 12 14 这三个数成等差数列,公差(后一个数减前一个数的定值)就是2,所以14后一个数就是16,92+16=108,这就是最后的答案。 ⑵ 7/9 13/9 20/9 28/9 (B) A、25/9 B、37/9 C、26/9 D、8/3 解:7/9 13/9 20/9 28/9 题目中的这几个数都是分数,而分子都是9,所以我们可以先不管分母来看分子,从中就可发现7,13,20,28,这几个数后一个与前一个的差分别为6,7,8,跟上题一样,也成一个等差数列,其等差值为1,所以后一个数就应是9,28+9=37,所以答案就是37/9 ⑶ 18 -27 36 (C ) 54 A、44 B、45 C、-45 D、-44 解: 这道题,先不看负号,那么这几个数就成等差数列,27-18=9,36-27=9公差分别为9,所以括号中的数就是45,再来看负号就会发现这个数列偶数项都是正的,奇数项都是负的,所以答案就是 -45。 ⑷ 9 1 4 3 40 (D) A、81 B、80 C、121 D、120 解: (1+9)*4=40 (1+9)*(3+4)=120 ⑸ 66 79 93 108 (D) A、121 B、120 C、122 D、124 解: 这道题也一样啊,前三个数,后一个数与前一个数的差分别为:13,14,15,因此括号内的数应比108大16,所以答案就是124。 二、应用题 ⑴甲乙两个队修一条路,乙队单独修10天完成,甲队 每天修150公里,如果两队合修9/2天可以修全路的3/4, 这条公路全长多少公里? 解:设甲要修x天可以完成,则根据题目就可得出乙每天修15x公里。全段路的长度就为150x.由此就可得出方程为: 9/2(15x+150)=3/4*10*15x。 化简求出x=15。那么整段路长就是15*150=2250 ⑵一个长方形的操场,周长是270米,长于宽的比是 5 :4 ,这个操场的面积是多少? 解:设这个操场的长为x,则宽就为5x/4,根据周长就可列出方程: 2*(x+5x/4)=270 x=60 5x/4=75 面积=60*75=4500 ⑶某人储蓄人民币1200元,定期2年,月利0.9%,到期 他可以得到本息多少元? 解:问题中的本息就是本金+利息,而利息=利率*时间*本金,所以就可列出式子:1200+24*0.9%*1200=1459.2元。 ⑷瓶内装有水,到入500克以后又到出一半,又到进500克 ,这时瓶内有水1200克,瓶内原有水多少? 解:设瓶内原有x克水,根据题意就可列出方程: x+500-(x+500)/2+500=1200 x=900 ⑸某国2000年的国民总收入是105亿元,总储蓄是7.5亿元, 问该国的2000年的储蓄率是多少? 解:储蓄率=7.5/105*100%≈7.1% 阿哥的回答 阿哥的答案
一、数字推理 下面的每一道试题都是按某种规律排列的数列, 但其中缺少一项,请你仔细的观察数列的排列规律, 然后从四个答案中选出正确的一个答案。 ⑴ 56 66 78 92 (A ) A、108 B、100 C、96 D、102 ⑵ 7/9 13/9 20/9 28/9 ( B) A、25/9 B、37/9 C、26/9 D、8/3 ⑶ 18 -27 36 ( C) 54 A、44 B、45 C、-45 D、-44 ⑷ 9 1 4 3 40 ( C) A、81 B、80 C、121 D、120 ⑸ 66 79 93 108 (D ) A、121 B、120 C、122 D、124 二、应用题 ⑴甲乙两个队修一条路,乙队单独修10天完成,甲队 每天修150公里,如果两队合修9/2天可以修全路的3/4, 这条公路全长多少公里? (3/4)/(9/2)=1/6 1/6-1/10=1/15 150/(1/15)=2250公里 ⑵一个长方形的操场,周长是270米,长于宽的比是 5 :4 ,这个操场的面积是多少? 270/2=135米 135/(5+4)*5==75米 135/(5+4)*4=60米 75*60=4500平方米 ⑶某人储蓄人民币1200元,定期2年,月利0.9%,到期 他可以得到本息多少元? 2年=24月 1200*0.9%*24=259.2元 259.2+1200=1459.2元 ⑷瓶内装有水,到入500克以后又到出一半,又到进500克 ,这时瓶内有水1200克,瓶内原有水多少? 设原来有水X克。 (X+500)/2+500=1200 (X+500)/2=700 X+500=1400 X=900 ⑸某国2000年的国民总收入是105亿元,总储蓄是7.5亿元, 问该国的2000年的储蓄率是多少? 7.5/105*100%~7.1% 嘿嘿!!!!
一、数字推理 下面的每一道试题都是按某种规律排列的数列, 但其中缺少一项,请你仔细的观察数列的排列规律, 然后从四个答案中选出正确的一个答案。 ⑴ 56 66 78 92 (A ) A、108 B、100 C、96 D、102 ⑵ 7/9 13/9 20/9 28/9 ( B) A、25/9 B、37/9 C、26/9 D、8/3 ⑶ 18 -27 36 ( C) 54 A、44 B、45 C、-45 D、-44 ⑷ 9 1 4 3 40 ( C) A、81 B、80 C、121 D、120 ⑸ 66 79 93 108 (D ) A、121 B、120 C、122 D、124 二、应用题 ⑴甲乙两个队修一条路,乙队单独修10天完成,甲队 每天修150公里,如果两队合修9/2天可以修全路的3/4, 这条公路全长多少公里? (3/4)/(9/2)=1/6 1/6-1/10=1/15 150/(1/15)=2250公里 ⑵一个长方形的操场,周长是270米,长于宽的比是 5 :4 ,这个操场的面积是多少? 270/2=135米 135/(5+4)*5==75米 135/(5+4)*4=60米 75*60=4500平方米 ⑶某人储蓄人民币1200元,定期2年,月利0.9%,到期 他可以得到本息多少元? 2年=24月 1200*0.9%*24=259.2元 259.2+1200=1459.2元 ⑷瓶内装有水,到入500克以后又到出一半,又到进500克 ,这时瓶内有水1200克,瓶内原有水多少? 设原来有水X克。 (X+500)/2+500=1200 (X+500)/2=700 X+500=1400 X=900 ⑸某国2000年的国民总收入是105亿元,总储蓄是7.5亿元, 问该国的2000年的储蓄率是多少? 7.5/105*100%~7.1%
⑶某人储蓄人民币1200元,定期2年,月利0.9%,到期 他可以得到本息多少元? 纳税已改为5%
⑴ 56 66 78 92 (A ) A、108 B、100 C、96 D、102 ⑵ 7/9 13/9 20/9 28/9 (B ) A、25/9 B、37/9 C、26/9 D、8/3 ⑶ 18 -27 36 (B ) 54 A、44 B、45 C、-45 D、-44 ⑷ 9 1 4 3 40 ( )是不是抄错了??? A、81 B、80 C、121 D、120 ⑸ 66 79 93 108 ( D) A、121 B、120 C、122 D、124 二、应用题 ⑴甲乙两个队修一条路,乙队单独修10天完成,甲队 每天修150公里,如果两队合修9/2天可以修全路的3/4, 这条公路全长多少公里? 解:设这条公路全长x公里 (150+x/10)*9/2=3x/4 解得:x=2250 ⑵一个长方形的操场,周长是270米,长于宽的比是 5 :4 ,这个操场的面积是多少? 解:设宽为x米,长为5x/4米。 2*(x+5x/4)=270 x=60 5x/4=75 60*75=4500 平方米 ⑶某人储蓄人民币1200元,定期2年,月利0.9%,到期 他可以得到本息多少元? 1200+1200*2*12*0.9%*0.8=1407.36元 ⑷瓶内装有水,到入500克以后又到出一半,又到进500克 ,这时瓶内有水1200克,瓶内原有水多少? (1200-500)*2-500=900克 ⑸某国2000年的国民总收入是105亿元,总储蓄是7.5亿元, 问该国的2000年的储蓄率是多少? 7.5/105*100%=7.1%
一、A,B,C,D,D 二、(1) 2250 (2)4500 (3)1459.2 (4)900 (5)7.14%

5,小学数学

1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 第一部分: 概念 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数 (0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24、比例的基本性质:在比例里,两外项之积等于两内项之积。 25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y 28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。 32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33、要学会把小数化成分数和把分数化成小数的化发。 34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。) 35、互质数: 公约数只有1的两个数,叫做互质数。 36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数) 39、最简分数:分子、分母是互质数的分数,叫做最简分数。 40、分数计算到最后,得数必须化成最简分数。 41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行 42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。 43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414 50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654 51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654…… 52、什么叫代数? 代数就是用字母代替数。 53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c ---------------------------------------------------------------------------------------------------------------------- 第二部分:定义定理 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 ---------------------------------------------------------------------------------------------------------------------- 第三部分:几何体 1.正方形 正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长 公式:S=a×a 正方体的体积=边长×边长×边长 公式:V=a×a×a 2.正方形 长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽 公式:S=a×b 长方体的体积=长×宽×高 公式:V=a×b×h 3.三角形 三角形的面积=底×高÷2。 公式:S= a×h÷2 4.平行四边形 平行四边形的面积=底×高 公式:S= a×h 5.梯形 梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圆 直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径 公式:c=πd =2πr 圆的面积=半径×半径×π 公式:S=πrr 7.圆柱 圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的总体积=底面积×高。 公式:V=Sh 8.圆锥 圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh 三角形内角和=180度。 平行线:同一平面内不相交的两条直线叫做平行线 垂直:两条直线相交成直角,像这样的两条直线, 我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 ---------------------------------------------------------------------------------------------------------------------- 第四部分:计算公式 数量关系式: 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 ****************************************************** 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) ****************************************************** 植树问题: 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ****************************************************** 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 ****************************************************** 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 ****************************************************** 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 ****************************************************** 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 ****************************************************** 浓度问题: 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 ****************************************************** 利润与折扣问题: 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) ****************************************************** 面积,体积换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1公顷=10000平方米 1亩=666.666平方米 (5)1升=1立方分米=1000毫升 1毫升=1立方厘米 ****************************************************** 重量换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 ****************************************************** 人民币单位换算 1元=10角 1角=10分 1元=100分 ****************************************************** 时间单位换算: 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒

6,小学数学公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径 ?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒积=底面积×高 V=Sh 第一部分: 概念 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数 0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24、比例的基本性质:在比例里,两外项之积等于两内项之积。 25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y 28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。 32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33、要学会把小数化成分数和把分数化成小数的化发。 34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。) 35、互质数: 公约数只有1的两个数,叫做互质数。 36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数) 39、最简分数:分子、分母是互质数的分数,叫做最简分数。 40、分数计算到最后,得数必须化成最简分数。 41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行 42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。 43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414 50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654 51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654…… 52、什么叫代数? 代数就是用字母代替数。 53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c 第二部分:定义定理 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 第三部分:几何体 1.正方形 正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长 公式:S=a×a 正方体的体积=边长×边长×边长 公式:V=a×a×a 2.正方形 长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽 公式:S=a×b 长方体的体积=长×宽×高 公式:V=a×b×h 3.三角形 三角形的面积=底×高÷2。 公式:S= a×h÷2 4.平行四边形 平行四边形的面积=底×高 公式:S= a×h 5.梯形 梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圆 直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径 公式:c=πd =2πr 圆的面积=半径×半径×π 公式:S=πrr 7.圆柱 圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的总体积=底面积×高。 公式:V=Sh 8.圆锥 圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh 三角形内角和=180度。 平行线:同一平面内不相交的两条直线叫做平行线 垂直:两条直线相交成直角,像这样的两条直线, 我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 第四部分:计算公式 数量关系式: 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 ****************************************************** 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) ****************************************************** 植树问题: 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ****************************************************** 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 ****************************************************** 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 ****************************************************** 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 ****************************************************** 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 ****************************************************** 浓度问题: 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 ****************************************************** 利润与折扣问题: 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) ****************************************************** 面积,体积换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1公顷=10000平方米 1亩=666.666平方米 (5)1升=1立方分米=1000毫升 1毫升=1立方厘米 ****************************************************** 重量换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 ****************************************************** 人民币单位换算 1元=10角 1角=10分 1元=100分 ****************************************************** 时间单位换算: 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒
加法,减法,除法I,乘法公式
文章TAG:4560除以27多少4560除以多少

最近更新

  • ao4435多少钱,84消毒液多少钱一瓶ao4435多少钱,84消毒液多少钱一瓶

    84消毒液多少钱一瓶2,求大功率开关管工作电压12V启动电流达到100A左右工作电流是810A3,OCTO手表都多少钱4,移动电源IC的MOS管5,这个烟多少钱一盒6,怎么用万用表检测场效应管的好坏7,这个555.....

    电路分析 日期:2024-04-10

  • 戴维南电路题,电路的戴维宁定理戴维南电路题,电路的戴维宁定理

    在断开的电路中,找到剩余短路的戴维宁(诺顿)等效电路。解决方法:首先,找出电阻R从电路断开后的戴维宁等效电路,求解戴维南定理的基本步骤如下:戴维南等效是关于电压源的等效,因此,第一步:将需.....

    电路分析 日期:2024-04-10

  • 电阻精度的测量电路,高精度电阻测量电路电阻精度的测量电路,高精度电阻测量电路

    测量电阻时应注意以下几点:第一,测量前先切断电路!测量被测电阻时,应断开被测线路的电源,否则会影响测量精度,严重时还会损坏万用表。例如,为了测量汽车中电器或线路的电阻,可以断开电池,输入.....

    电路分析 日期:2024-04-10

  • 开发芯片要多少钱,做芯片大约能要多少钱啊开发芯片要多少钱,做芯片大约能要多少钱啊

    做芯片大约能要多少钱啊现在一般来说都在5000以上做芯片要一定批量。贵的多得是你要做什么芯片。2,做一块基因芯片要花多少钱看什么公司的,有三千多到六七千都有。看做什么项目了,佳学基.....

    电路分析 日期:2024-04-10

  • cx1084稳压多少伏,cx1084ADJ电流是多少cx1084稳压多少伏,cx1084ADJ电流是多少

    cx1084ADJ电流是多少此为最大输出5A的LDO这个应当是1个产品的型号2,CX1084是什么块电源稳压器,3.3V和5V的比较常用-------------------------3,电子式仪表稳压器的输出电压一般为多少伏.....

    电路分析 日期:2024-04-10

  • 电压保护器的接线如何连接电涌保护器电压保护器的接线如何连接电涌保护器

    两相漏电保护器接线,电涌保护器的正确接线方法是选择与电涌保护器额定电流和电压相匹配的插座。漏电保护器用于支路保护时,电涌保护器的正确接线方法,使用正确的电缆和连接器:选择合适的.....

    电路分析 日期:2024-04-10

  • boost电路的频率能达到多少,为什么boost电路的pwm波占空比达到一定值就会短路boost电路的频率能达到多少,为什么boost电路的pwm波占空比达到一定值就会短路

    本文目录一览1,为什么boost电路的pwm波占空比达到一定值就会短路2,sy7711芯片boost电路效率3,BOOST电路中的PWM频率如何设置跟电感和开关管的关系如何4,boost电路5,980ti145g超1070是指的bo.....

    电路分析 日期:2024-04-10

  • 电容器组的耐压是多少,高压电容器组总容量大于多少时必须采用电容器组的耐压是多少,高压电容器组总容量大于多少时必须采用

    高压电容器组总容量大于多少时必须采用2,串联后的电容器耐压是多少3,什么是电容器组的耐压值和电容器耐压值有什么不同4,电容器的电容的耐压值5,电容的容量和耐压6,电阻和电容的耐压是多少7.....

    电路分析 日期:2024-04-09