首页 > 算法 > 自动驾驶 > 高速 pcb 阻抗匹配是多少,PCB阻抗匹配问题

高速 pcb 阻抗匹配是多少,PCB阻抗匹配问题

来源:整理 时间:2023-01-02 23:46:57 编辑:亚灵电子网 手机版

1,PCB阻抗匹配问题

你所说的与导线的长宽高,导线的介电常数和板子的介电常数有关通常是指射频无线通信才考虑这些,而射频PCB走线与最后的负载(其实就是天线)之间是有隔离的,而天线就是所谓的负载,天线具有阻抗特性,选择合适的阻值即可

PCB阻抗匹配问题

2,在高速PCB 设计原理图设计时如何考虑阻抗匹配问题

在设计高速PCB电路时,阻抗匹配是设计的要素之一。而阻抗值跟走线方式有绝对的关系, 例如是走在表面层(microstrip)或内层(stripline/double stripline),与参考层(电源层或地层)的距离,走线宽度,PCB材质等均会影响走线的特性阻抗值。也就是说要在布线后才能确定阻抗值。一般仿真软件会因线路模型或所使用的数学算法的限制而无法考虑到一些阻抗不连续的布线情况,这时候在原理图上只能预留一些terminators(端接),如串联电阻等,来缓和走线阻抗不连续的效应。真正根本解决问题的方法还是布线时尽量注意避免阻抗不连续的发生。

在高速PCB 设计原理图设计时如何考虑阻抗匹配问题

3,线路阻抗匹配

简单的说就是为了线路能得到最大的输出功率。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

线路阻抗匹配

4,高速PCB设计Layout时把阻抗匹配的分毫不差真的有必要吗

做高速PCB设计,对于传输线都会有阻抗控制的要求,例如单端50欧(±10%),差分100Ω(±10%)等等,对阻抗控制要求高的还会要求到±5%的精度,因为砖家们说了,如果阻抗不匹配或者阻抗不连续,会造成信号反射,带来信号完整性问题。OK,既然阻抗不匹配或者阻抗不连续会造成信号完整性问题,那是否我们只要在做pcb layout前,计算出能够精确匹配目标特性阻抗的pcb叠层和对应的线宽、线距,并严格按照该线宽和线距来布高速信号线,然后将该PCB制板文件提交给板厂,板厂就能制作出完全匹配特性阻抗控制要求的PCB?你按照目标特性阻抗要求,精心计算了对应的线宽线距和层叠结构,并严格按照该线宽要求来布线,将制板要求和制板文件发给板厂,结果却然并卵……因为你的叠层结构和要求控制的阻抗线宽、线距到了板厂那里,板厂还需要进行重新计算并结合自身的材料和工艺情况进行补偿和调整,即使是已经量程并验证过的PCB,如果换了新的板厂生产,也可能面临着需要进行线宽、线距和层叠结构的调整。请看下边这张图,特么的这几个阻抗计算软件在参数一致的情况下算出的特性阻抗值竟然不一样…特性阻抗计算差异 所以,你的阻抗计算软件最好得跟板厂的阻抗计算软件保持一致,这就避免了计算软件不同而造成的结果偏差,现在国内大多数板厂用的都是polar,大家可以跳转过去装polar si9000来算阻抗。其次,你的所有计算参数都是基于理想的数值来计算的,没有考虑残铜率(这个会影响压合后的介质层厚度),不同批次的板材的介电常数偏差,PCB压合工艺偏差等影响最终特性阻抗的因素。共面波导特性阻抗–Polar 9000 所以,即使你能够通过软件计算出特性阻抗完全符合50Ω的线宽并严格按照该线宽值来layout,但是到了板厂那里,由于工艺和板材差异影响,最终特性阻抗达到±5%的精度,这已经算是比较高的了。由于工艺的不同,不同的板厂对pcb特性阻抗的调整和补偿也是不同的,即使是同一款已经量产确认过的pcb,换了不同板厂之后,板厂还是会对pcb线宽或介质层厚度进行微调。板厂一般会根据PCB的个性化设计、实际生产中的参数影响和丰富的设计经验,对阻抗理论值进行精确计算和微调,确保满足PCB的阻抗控制要求。老wu合作的板材就走的是负公差,板厂的阻抗理论计算值要比我们要求控制的值小些,比如我们要求单端控50Ω,他按照48Ω来算出线宽要求,然后在生产的时候进行补偿和控制,最终的成品阻抗值才能符合我们的要求精确控制阻抗不是我们layout的事情,而是板厂的事情,只要板厂能够确保生产出的pcb能够满足阻抗特性要求就OK了。为了降低生产成本,如果信号要求阻抗偏差符合±10%,那我们就没必要要求板厂按照±5%来生产,造成没必要的成本增加。为什么大多数datasheet上要求的都是控制在±10%,那是根据板厂的现行工艺能力和成本,结合IC对阻抗特性偏差的容忍度进行综合的数值,也许随着PCB制板工艺的提高,通信速率的增加,以后对特性阻抗的控制偏差为±3%或者±1%那都不是事,O(∩_∩)O~我们layout时只需跟板厂沟通好,把相应的层叠结构、所需板材、需要控制的特性阻抗告诉板厂,然后按照板厂给出的建议线宽线距来layout就行了。在进行layout时,通过阻抗计算软件进行理论值的初步计算,大致判断是否满足阻抗要求给板厂预留一些微调的空间,剩下的阻抗控制事情那是板厂解决就行了。我们相信,我们合作的板厂会是我们神一样的队友…不会让我们失望的PCB特效阻抗测试

5,关于PCB设计时阻抗匹配问题

输入、传输线、输出,三个理论上都一样是最好的, 有一处不一样的话,会在阻抗不连续的地方发生信号反射。一般所有芯片都把输入输出阻抗做到50-100欧之间,所以走线的特征阻抗要求不高,在这范围内都可以,保证一致就行
你所说的与导线的长宽高,导线的介电常数和板子的介电常数有关通常是指射频无线通信才考虑这些,而射频pcb走线与最后的负载(其实就是天线)之间是有隔离的,而天线就是所谓的负载,天线具有阻抗特性,选择合适的阻值即可

6,解析为什么要进行阻抗匹配

一、什么是阻抗 在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。其中电抗又包括容抗和感抗,由电容引起的电流阻碍称为容抗,由电感引起的电流阻碍称为感抗。二、阻抗匹配的重要性 阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。 1、调整负载功率 假定激励源已定,那么负载的功率由两者的阻抗匹配度决定。对于一个理想化的纯电阻电路或者低频电路,由电感、电容引起的电抗值基本可以忽略,此时电路的阻抗来源主要为电阻。如图2所示,电路中电流I=U/(r+R),负载功率P=I*I*R。由以上两个方程可得当R=r时P取得最大值,Pmax=U*U/(4*r)。2、抑制信号反射 当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。同样,当信号传输中如果传输线上发生特性阻抗突变也会发生反射。波长与频率成反比,低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题。高频领域,当信号的波长与传输线长出于相同量级时反射的信号易与原信号混叠,影响信号质量。通过阻抗匹配可有效减少、消除高频信号反射。 三、阻抗匹配的方法 阻抗匹配的方法主要有两个,一是改变组抗力,二是调整传输线。 改变阻抗力就是通过电容、电感与负载的串并联调整负载阻抗值,以达到源和负载阻抗匹配。 调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。此时信号不会发生发射,能量都能被负载吸收。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为85-100欧姆。 四、阻抗匹配的应用 1、功放与音箱 无论是定阻抗式还是定电压式输出的功放,只有喇叭的总功率和功放的总功率相等时才能得到最佳的工作状态。音箱系统若要完全达到匹配是非常困难的,它的音频成分总是在不停的变化,好在音箱系统对阻抗匹配度要求并不高。最常见到的喇叭阻抗的标示值是8欧姆,它表示当输入1KHz的正弦波信号,它呈现的阻抗值是八欧姆;或者是在喇叭的工作频率响应范围内,平均阻抗为8欧姆。2、PCB走线 高频领域中,信号频率对PCB走线的阻抗值影响非常大。一般来说当数字信号边沿时间小于1ns或者模拟信号频率超过300M时就要考虑阻抗问题。PCB走线阻抗主要来自寄生的电容、电阻、电感系数,主要因素有材料介电常数、线宽、线厚乃至焊盘的厚度等。PCB 阻抗的范围是 25 至120 欧姆,USB、 LVDS、 HDMI、 SATA等一般要做85-100欧姆阻抗控制。3、天线设计 研究天线阻抗的主要目的是为实现天线和馈线间的匹配。发射信号时应使发射天线与馈线的特性阻抗相等,以获得最好的信号增益。接收信号时天线与负载应做共轭匹配,接收机(负载)阻抗一般认为只有实数部分,因此需要用匹配网络来除去天线的电抗部分并使它们的电阻部分相等。图7为天线阻抗匹配时常用的π型网络,使用网络分析仪测量阻抗以确定 C1、C2、C3 的取值,完成阻抗匹配。4、终端匹配电阻 Namisoft在设计CAN总线、485总线时常需要在差分线两端加终端电阻(匹配电阻),以减少由特性阻抗突变造成的信号反射。如下图CAN总线网络,双绞线特性阻抗为120欧姆,若不加终端电阻两端直接悬空,空气的特性阻抗为无穷大。此时,极易出现图4所示的信号反射。 图8 CAN总线网络 对于CAN总线来说,由于收发器对信号电平判断的采样点位置普遍靠后,因此信号反射一般不会影响通信错误率。反射会影响产品的EMI特性,最直接的表现就是眼图实验效果差,存在两个异常凸起。 图10 M6G2C-256LI工业级核心板

7,50阻抗匹配问题

你好: ——★1、这里说的50Ω阻抗匹配,是该PCB(电路)的输入阻抗为50Ω。 ——★2、信号线的特性阻抗,与电路的输入阻抗相一致,输入端得到的信号功率最大,也就是说信号损失最小。【这就是所谓的阻抗匹配】一般情况下是指高频电路。 ——★3、举例说明:电视机的输入阻抗为75Ω,天线的馈线也必须是75Ω,这样才能使信号的传输损失最小。 ——★4、如果是前级放大器输入的信号,那么前级放大器的输出阻抗、传输线缆、该PCB(电路)的输入阻抗【都为50Ω】。

8,pcb有元器件的部分怎么计算阻抗匹配

从信号完整性角度来说,是需要尽量减少过孔,元件等,但是实际布线中,不可避免都会有这些,我们不能保证全部线路都能满足自己希望的阻抗,只能尽量做到这点,不知道你的测试频率到多少,我们设计的产品到1G,实际画板过程中,信号对也不完全是等间距的,信号的等长比等间距更重要。信号在经过管脚或者电感,电容等元件时,不管阻抗设计的再好,信号在这点也会有反射,但是只要最终的测试结果能满足要求就可以了,我的设计原则是不管过孔和元件焊盘,保证线路上的走线阻抗满足单端50欧,信号对100欧的要求。
芯片的输入输出阻抗是芯片datasheet里面提供的。多大的阻抗能更好的发挥芯片的功能,必须让阻抗匹配。阻抗的匹配就好比两根口径不一样的水管,至于怎么进行对接就相当于如何匹配了。阻抗的匹配跟你制pcb板的材质,介电常数、铜箔厚度、等等参数有关。就能算出微带线的宽度甚至是长度的阻抗了。

9,sdi 信号pcb做多少欧姆阻抗匹配

SDI 链路,PCB设计中,通常都让板厂做75欧姆阻抗!
来,广播里传出了一个声音:请全体师生起立,为哀悼在四川大地震中遇难的同胞,请默哀三分钟.时间仿佛又倒流回那个恐怖的时候…… 二零零八年五月十二日下午,当人们全部沉浸在工作与学习的喜悦中的时候,孰不知一场灾难正在悄悄的酝酿,人不知鬼不觉地来临.十四时二十八分,这个恐怖的时间,一场灭顶之灾从天而降,以四川省汶川为震中心的8.0级地震吞噬了人们美好的梦,这场地震摧毁了人们的家园,殃及了多个省市和地区,顿时,电力中断,交通瘫痪,山体崩塌,河水泛滥,灾区人民陷入了水深火热之中,汶川,这个在地图上鲜为人知的地方,人们很少谈起的地方,在一瞬间成为海内外人民关注的焦点,也就是那时,人们便发扬爱的精神,向灾区人民伸出援助之手
常有的有75-7,75-5,75-3,75-1等型号,特性阻抗都是75欧姆,以适应不75-5是

10,请问什么叫阻抗匹配

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 一.阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、 串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、 并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。 双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则: ⑴. 两电阻的并联值与传输线的特征阻抗相等; ⑵. 与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大; ⑶. 与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。 并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。 当然还有:AC终端匹配; 基于二极管的电压钳位等匹配方式。 二 .将讯号的传输看成软管送水浇花 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就? 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢! 反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。 三. 传输线之终端控管技术(Termination) 由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。 当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28 ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。 四.特性阻抗(Characteristic Impedance) 当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。 是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了关系。 阻抗匹配不良的后果 由于高频讯号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线(并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10%或 ±5%)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。 但当上述微带线中Z0的四种变数(w、t、h、 r)有任一项发生异常,例如讯号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀(Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反弹反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题。 阻抗匹配不良造成杂讯 上述部分讯号能量的反弹,将造成原来良好品质的方波讯号,立即出现异常的变形(即发生高准位向上的Overshoot,与低准位向下的Undershoot,以及二者后续的Ringing)。此等高频杂讯严重时还会引发误动作,而且当时脉速度愈快时杂讯愈多也愈容易出错。 参考资料:http://www.99eda.com/show.aspx?id=296&cid=21
文章TAG:高速高速阻抗阻抗匹配

最近更新

  • BA6208是什么芯片,BA6247是什么芯片?BA6208是什么芯片,BA6247是什么芯片?

    什么是芯片,它的用途是什么?BABA:镁光的MLC闪存芯片,单芯片,本地主控芯片BA,这是PCItoISA桥芯片的最后一张图,右边是BIOS芯片。都是信号解调芯片,芯片正面连接调谐器芯片,调谐器芯片为开关电源.....

    自动驾驶 日期:2024-04-10

  • 松下npm贴片机多少钱,买松下贴片机多少钱松下npm贴片机多少钱,买松下贴片机多少钱

    买松下贴片机多少钱5元2,问下全新的松下贴片机cm602Lnmejm8a12吸嘴0402芯片的的要300万1000万都有你好!大概20万左右,市场的行情是这样,可以去问问。打字不易,采纳哦!3,买一台松下贴片机要多.....

    自动驾驶 日期:2024-04-10

  • A9智能电视处理器能跑多少分,A9频率14怎么442系统和422系统安兔兔跑分一样A9智能电视处理器能跑多少分,A9频率14怎么442系统和422系统安兔兔跑分一样

    A9频率14怎么442系统和422系统安兔兔跑分一样2,海信LED网络电视所用的A9CPU是怎样档次的CPU3,Mstar6A918处理器的主要参数4,a9处理器相当于骁龙多少5,三星a9安兔兔跑分50000多分正常吗6,苹.....

    自动驾驶 日期:2024-04-10

  • 03db是多少,30wt等于多少03db是多少,30wt等于多少

    30wt等于多少wt%是重量百分比的意思,如重量百分含量为30。即100公斤物质中,某元素含量为30公斤。0.32,33cl等于多少ml厘升cl是体积单位为酿酒行业以及调酒师的常用术语进行单位转换的话1.....

    自动驾驶 日期:2024-04-10

  • 占空比多少有意义,占空比控制有什么优点占空比多少有意义,占空比控制有什么优点

    占空比控制有什么优点2,100占空比有何意义3,氩弧焊机的占空比在脉冲的过程中起到什么作用4,万用表上的占空比是什么意思什么是占空比占空比是什么意思5,占空比有什么作用谁来指点一下6,什么.....

    自动驾驶 日期:2024-04-10

  • 电路正负极颠倒危害,锂电池正负极接反电路正负极颠倒危害,锂电池正负极接反

    损坏电路元件:电动自行车电池正负极接反后,通电后会损坏电路元件。一旦正负极颠倒,电动自行车电池正负极接反会导致以下情况:保险丝熔断:电动自行车电池正负极接反后,保险丝一旦通电就会.....

    自动驾驶 日期:2024-04-10

  • 电路图中网孔,电路中网格的概念电路图中网孔,电路中网格的概念

    网格电流法只适用于平面电路图。网状:在确定的电路图中,最简单的不能细分的回路称为网状,下面的电路图中有几个分支,电路拓扑又称电路图,即电路结构,是对电路图的再次抽象,网状:将电路画在平.....

    自动驾驶 日期:2024-04-10

  • 电路板的硬件调试,简述硬件电路的设计流程电路板的硬件调试,简述硬件电路的设计流程

    电路板制作完成后,将购买的元件焊接到PCB板上,然后对电路板进行测试和调试。印刷电路板的测试和调试计划,拿到电路板的第一件事是查看是否有大型设备型号和引脚,更换电路板的高昂成本也成.....

    自动驾驶 日期:2024-04-10